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Simplified recursive algorithm for Wigner 3 j and 6j symbols
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We present a highly accurate,ab initio recursive algorithm for evaluating the Wigner 3j and 6j symbols.
Our method makes use of two-term, nonlinear recurrence relations that are obtained from the standard three-
term recurrence relations satisfied by these quantities. The use of two-term recurrence relations eliminates the
need for rescaling of iterates to control numerical overflows and thereby simplifies the widely used recursive
algorithm of Schulten and Gordon.@S1063-651X~98!02506-9#

PACS number~s!: 02.70.2c, 31.15.2p, 03.65.2w
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The Wigner 3j and 6j symbols arise frequently in con
texts involving the coupling of angular momenta in quantu
mechanics and other applications of the rotation gro
While one can utilize the explicit expressions of Wigner@1#
and Racah@1# to calculate specific values of these quantiti
computationally the direct approach is often impractical,
pecially for large quantum numbers. As has long been r
ognized, a convenient alternative numerical approach i
make use of the three-term recurrence relations@see Eq.~1!#
satisfied by these quantities. In 1975, Schulten and Gor
~SG! @2# developed anab initio recursive algorithm that ha
come to be widely used. A particular advantage of the
method is that it produces, as the result of the same calc
tion, not just the value of a single 3j or 6j symbol, as is the
case with the direct approach, but values for an entirefamily
of symbols whereby one quantum number is allowed
range over its allowed values with the other parameters
the symbol held fixed. From a computational point of vie
however, a limitation of the SG method is that it read
leads to numerical overflows. Existing implementations
the SG method are designed to test for the occurrenc
overflows and periodically rescale the iterates so as to k
them of a manageable magnitude to ensure numerical a
racy.

The purpose of this article concerns the limitation of t
SG recursive method: overflows and the need for coun
measures. We show that this feature can be avoided enti
Now, each of the 3j or 6j symbols f ( j ), g(m), or h( j ),
listed in Table I, separately obeys a recurrence relation of
form

Xc~n!c~n11!1Yc~n!c~n!1Zc~n!c~n21!50,

nmin<n<nmax, ~1!

where c(n) signifies eitherf ( j ), g(m), or h( j ), with the
index n denoting j or m together with its allowed range o
values,nmin<n<nmax. We also list in Table I the functions
Xc , Yc , and Zc that appear in the recurrence relation f
each symbol, as well as the minimum and maximum val
of the variablej or m. We propose to solve Eq.~1!, a linear,
three-term recurrence relation, by working with a pair
571063-651X/98/57~6!/7274~4!/$15.00
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nonlinear, two-termrecurrence relations, each equivalent
Eq. ~1!, which are defined in terms of the ratios of success
values of c(n). The first is given in terms of the ratio
r c(n)[c(n)/c(n21),

r c~n!5
2Zc~n!

Yc~n!1Xc~n!r c~n11!
, n<nmax21. ~2!

Note that Eq.~2! defines abackwardsrecurrence scheme
where, sinceXc(nmax11)50 for each of the symbols in
Table I, the starting valuer c(nmax)52Zc(nmax)/Yc(nmax) is
known. As an example, the version of Eq.~2! associated with
the 3j symbol f ( j ) is, using the information in Table I, given
by r f( j )52( j 11)A( j )/@B( j )1 jA( j 11)r f( j 11)#. The
second recurrence relation is defined in terms of the ra
sc(n)[c(n)/c(n11), which are suitable for forward itera
tion. In terms of these quantities, Eq.~1! is equivalent to

sc~n!5
2Xc~n!

Yc~n!1Zc~n!sc~n21!
, n>nmin11, ~3!

where, sinceZc(nmin)50, the starting value is known
sc(nmin)52Xc(nmin)/Yc(nmin). The numerical advantage o
making such transformations on Eq.~1! is that r c(n) and
sc(n) maintain values of order unity throughout the iter
tion, which eliminates the possibility of overflows. The re
son for considering separate backward and forward itera
schemes pertains to issues of numerical stability that are
cussed below. Before delving into these issues, howeve
will be instructive to illustrate the use of Eqs.~2! and ~3!.

We illustrate the use of Eqs.~2! and ~3! upon assuming
that thec(n) remain nonzero throughout the allowed rang
We first employ a backward iteration on Eq.~2! from n
5nmax down ton5nmid11, wherenmid is some convenien
midpoint, e.g.,nmid5

1
2 (nmin1nmax). One will thus have gen-

erated the sequence of iteratesr c(nmax),rc(nmax
21),...,rc(nmid11). It is then straightforward to obtainc(n)
for nmid11<n<nmax,

c~nmid1k!5c~nmid!)
p51

k

r c~nmid1p!,
7274 © 1998 The American Physical Society
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TABLE I. Parameters for, and constituents of, the three-term recurrence relations satisfied by the 3j and 6j symbols, as represented b
Eq. ~1!. In each case, all parameters except the variablej or m are held fixed. Also listed are the normalization condition and sign conven
for each symbol. We use the notation of Ref.@2#.

3 j or 6j
symbol ~c!

f~ j!5S j
2m22m3

j2
m2

j3
m3

D g~m!5S j1
m1

j2
m

j3
2m2m1

D h~ j!5H j
l1

j2
l2

j3
l3
J

Variable j m j
Xc jA( j 11) C(m11) jE( j 11)
Yc B( j ) D(m) F( j )
Zc ( j 11)A( j ) C(m) ( j 11)E( j )

A~ j!5$@ j22~ j22j3!
2#@~ j21j311!22j2#

3@ j22~m21m3!
2#%1/2

C~m!5@~ j 22m11!~ j 21m!

3~ j 32m2m111!

3~ j 31m1m1!#1/2

E~ j !5$@ j 22~ j 22 j 3!2#

3@~ j 21 j 311!22 j 2#

3@ j 22~ l 22 l 3!2#

3@~ l 21 l 311!22 j 2#%1/2

Functions B~ j !5~2 j 11!@~m21m3!

3$ j 2~ j 211!2 j 3~ j 311!%

2~m22m3! j ~ j 11!#

D~m!5 j 2~ j 211!1 j 3~ j 311!

2 j 1~ j 111!

22m~m1m1!

F~ j !5~2 j 11!$ j ~ j 11!@2 j ~ j 11!

1 j 2~ j 211!1 j 3~ j 311!

22l 1~ l 111!#1 l 2~ l 211!

3@ j ~ j 11!1 j 2~ j 211!

2 j 3~ j 311!#1 l 3~ l 311!

3@ j ~ j 11!2 j 2~ j 211!

1 j 3~ j 311!#%

End points j min5max(uj22j3u,um21m3u) mmin5max(2j2,2j32m1) j min5max(uj22j3u,ul22l3u)
j max5j21j3 mmax5min(j2,j32m1) j max5min(j21j3,l21l3)

Normalization (j5jmin

jmax ~2j11!f2~ j!51 ~2j111!(m5mmin

mmax g2~m!51 (2l 111)( j 5 j min

jmax (2j11)h2(j)51

Sign sgn@f(jmax)#5(21)j22j31m21m3 sgn@g(mmax)#5(21)j22j32m1 sgn@h(jmax)#5(21)j21j31l21l3
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1<k<nmax2nmid . ~4!

Of course, the value ofc(nmid) is presently unknown; it will
be determined shortly through normalization. We now iter
Eq. ~3! from n5nmin up to n5nmid21; this produces the
iterates sc(nmin),sc(nmin11),...,sc(nmid21). From these
quantities we obtainc(n) for nmin<n<nmid21,

c~nmid2k!5c~nmid!)
p51

k

sc~nmid2p!,

1<k<nmid2nmin . ~5!

With the combined equations~4! and ~5!, we have thus de-
termined thec(n) up to an unknown multiplicative facto
c(nmid). The magnitude of this factor is readily determin
by imposing the normalization conditions given in Table
We then utilize the phase information listed in Table I
completely determinec(n) for all n. As an example, we
show in Fig. 1 the result of applying this simple algorithm
obtain the family of 3j symbols,
e

.

f ~ j !5S j
215

100
70

60
255D ,

which remains nonzero over the allowed range 40< j <160.
The 3j and 6j symbols, of course, can and do vanish f

selected values of their parameters. If, say,c(n0)[0,
r c(n011) andsc(n021) are undefined. We must therefo
modify the above algorithm to account for this possibilit
and we will be guided by the following observations. Exam
ining Fig. 1, we note the resemblance betweenf ( j ) and a
one-dimensional bound quantum eigenstate. This is a gen
feature of the 3j and 6j symbols; we usef ( j ) merely as an
illustration. Now, it is known, from the semiclassical theo
of the 3j and 6j symbols @3#, that the range of allowed
quantum numbers,nmin<n<nmax, can be divided into the
following subranges: a ‘‘classical’’ regionnI<n<nII and
two complementary ‘‘nonclassical’’ regionsnmin<n,nI and
nII,n<nmax. The classical region is defined as the set
quantum numbers for which it is possible to construct a v
tor diagram showing the coupling of the angular moment
vectors; in the nonclassical regimes, such vector diagram
not exist@4#. The limits of the classical region,nI and nII ,
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are determined as the roots of a certain determinant, kn
as the Cayley determinant@3#. For the parameters of Fig. 1
these are shown as dashed lines. The important point is
in analogy with a bound eigenstate, in the classical region
3 j and 6j symbols have an oscillatory character, whereas
the nonclassical regions, they are monotonically decay
@3#. Depending on the width of the nonclassical regio
there can be many orders of magnitude difference betw
the smallest values ofuc(n)u ~found atnmax and nmin! and
the largest values, which occur in the classical region. In F
1, for example, there are some 25 orders of magnitude
ference between the largest and smallest values in this fa
of 3 j symbols.

These considerations are relevant for the following r
sons. In numerical treatments of the one-dimensional Sc¨-
dinger equation, one employs the standard finite-differe
approximation to replace the continuous differential equat
by a three-term recurrence relation. We note that, convers
as discussed in Ref.@2#, the three-term recurrence relation
satisfied by the 3j and 6j symbols can be shown to origina
from eigenvalue problems. Now, as is well known, thre
term recurrence relations possess two linearly indepen
solutions. If the desired physical solution of a recurren
relation is monotonically decreasing, as with the decay
c(n) in its nonclassical regions, it is simple to show that t
other, linearly independent solution will be monotonica
increasing. Indeed, the source of the numerical instab
associated with three-term recurrence relations is that@5# if
one attempts to calculate a decaying solution of the re
rence relation byforward iteration, the slightest round-of
error will trigger the growth of the unwanted, linearly ind
pendent, diverging solution.

Therefore, in the nonclassical regions one must iterate
recurrence relation in the direction of increasinguc(n)u to
avoid the instability. These are also just the regions wh

FIG. 1. Values for the family of 3j symbols, f ( j )
5(215

j
70

100
255
60 ), over the entire range of allowedj values, 40< j

<160. In the classical region,j I< j < j II , where herej I549 and
j II598 ~shown as dashed lines!, f ( j ) has an oscillatory character; i
the nonclassical regions,f ( j ) decays monotonically. There are a
25 orders of magnitude difference between the largest and sma
values in this family of 3j symbols.
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overflows can develop. By contrast, in the classical regi
where the solutions to the recurrence relation are oscillat
there is no source of instability and one may safely iterate
either direction. The problem we seek to avoid in our rat
based method is that of encountering an identically z
value of c. The zeros ofc, however, if they occur, occu
only in the classical region, wherec(n) is oscillatory. We
therefore adopt a hybrid approach. We utilize the two-te
recurrence relations~2! and~3! in the respective nonclassica
regions and the three-term recurrence relation~1! in the clas-
sical region.

For our purposes, however, preciselywhereone draws the
line between the classical and nonclassical regions is
crucial; all that is important is that we stop iterating wi
Eqs.~2! and~3! somewhere in the classical region, before w
encounter a zero ofc(n). We will therefore adopt the fol-
lowing convention. In iterating Eqs.~2! and ~3!, starting
from nmax and nmin , respectively, we note that bothr c(n)
and sc(n) initially maintain values less than unity. Onl
when we reach the first local extremum ofc(n) do r c andsc
first exceed unity. This provides a natural criterion for t
locations of the boundaries and one that is simple to imp
ment algorithmically. We will denote the values ofn where
r c(n) andsc(n) first exceed unity~having started fromnmax
andnmin! by n1 andn2 , respectively. Specifically, we hav
r c(n1).1, but r c(n111),1.

The modifications of Eqs.~4! and ~5! then become

c~n11k!5c~n1!)
p51

k

r c~n11p!,

1<k<nmax2n1 , ~48!

and

c~n22k!5c~n2!)
p51

k

sc~n22p!,

1<k<n22nmin , ~58!

where, as before,r c andsc are obtained from Eqs.~2! and
~3!, now for n1<n<nmax andnmin<n<n2 , respectively. At
this point, we have the unknown quantities in Eqs. (48) and
(58), c(n1) and c(n2). We can eliminate one of thes
unknowns in terms of the other as follows. Let us define t
auxiliary sequencesC2(n)[c(n)/c(n2) and C1(n)
[c(n)/c(n1). These quantities obviously satisfy the sam
three-term recurrence relation~1!. One can then use Eq.~1!
to iterateC2(n) in the forward direction starting fromn
5n2 , using the initial valuesC2(n221)5sc(n221) and
C2(n2)51, up to some value ofn, nc<n1 , say.~For con-
venience, we can takenc5n1 if desired.! Likewise, we can
use Eq.~4! to iterateC1(n) in the backward direction start
ing from n5n1 , using the initial valuesC1(n111)
5r c(n111) andC1(n1)51, down ton5nc . The value of
c(nc) derived from these two sequences must obviously
identical. This yields the connection betweenc(n1) and
c(n2), c(n2)/c(n1)5C1(nc)/C2(nc). Multiplying the
C2(n) ~which have now been evaluated unambiguously
nmin<n<nc! by c(n2)/c(n1) thus leaves us withC1(n)
for nmin<n<nmax; i.e., we have determinedc(n) up to the

est
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unknown multiplicative factorc(n1). As before, we deter-
mine this factor by applying the normalization conditio
and sign conventions given in Table I.

In conclusion, we have presented a recursive algorithm
compute the Wigner 3j and 6j symbols that simplifies the
well-known SG method. Our method is based on the use
nonlinear, two-term recurrence relations that are obtai
from the standard three-term recurrence relations obeye
the 3j and 6j symbols. By eliminating the programmin
overhead of having to check for near overflows and keep
,
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g

track of rescaling factors, our algorithm provides a high
accurate, yet significantly simpler framework, with which
calculate these quantities.
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