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Simplified recursive algorithm for Wigner 3j and 6] symbols
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We present a highly accuratab initio recursive algorithm for evaluating the Wignej and § symbols.
Our method makes use of two-term, nonlinear recurrence relations that are obtained from the standard three-
term recurrence relations satisfied by these quantities. The use of two-term recurrence relations eliminates the
need for rescaling of iterates to control numerical overflows and thereby simplifies the widely used recursive
algorithm of Schulten and Gordof51063-651X98)02506-9

PACS numbds): 02.70~c, 31.15-p, 03.65-w

The Wigner 3 and § symbols arise frequently in con- nonlinear, two-termrecurrence relations, each equivalent to
texts involving the coupling of angular momenta in quantumEg. (1), which are defined in terms of the ratios of successive
mechanics and other applications of the rotation groupvalues of ¢(n). The first is given in terms of the ratios
While one can utilize the explicit expressions of Wigh&l  r ,(n)=(n)/4(n—1),
and Racaljl] to calculate specific values of these quantities,
computationally the direct approach is often impractical, es- —Zyn)
pecially for large quantum numbers. As has long been rec- ry(n)= Y () + X, (n)r,(n+1)’
ognized, a convenient alternative numerical approach is to

make use of the three-term recurrence relatise® Eq(1)]  Note that Eq.(2) defines abackwardsrecurrence scheme,
satisfied by these quantities. In 1975, Schulten and Gordoghere, sinceX,(Nmact1)=0 for each of the symbols in
(SG [2] developed arab initio recursive algorithm that has Taple |, the starting value ,(Nmad = —Z(Nmad!Y (M) IS
come to be widely used. A particular advantage of the SGinown. As an example, the version of E8) associated with
method is that it produces, as the result of the same calculgne 3j symbolf(j) is, using the information in Table I, given
tion, not just the value of a singlej 2r 6j symbol, as is the by r¢(j)=—(j+1)A3G)/[B(j)+jA(j+1)r¢(j+1)]. The
case with the direct approach, but values for an efféingly  second recurrence relation is defined in terms of the ratios
of symbols whereby one quantum number is allowed tosw(n)zw(n)/zp(nJr 1), which are suitable for forward itera-

range over its allowed values with the other parameters ofion |n terms of these quantities, E@.) is equivalent to
the symbol held fixed. From a computational point of view,

however, a limitation of the SG method is that it readily —Xy(n)
leads to numerical overflows. Existing implementations of sy(n)= Y (M1 Z,M)s,(n—1)"
the SG method are designed to test for the occurrence of 4 LA
overflows and periodically rescale the iterates so as to keevF\)/here, sinceZ,(nyu)=0, the starting value is known,

trggr/n of a manageable magnitude to ensure numerical accg—w(nmm):_Xw(nmin)/Yw(nmin)‘ The numerical advantage of

The purpose of this article concerns the limitation of themaklng such transformations on EQ) is thatr,(n) and

SG recursive method: overflows and the need for counter§¢(n) maintain values of order unity throughout the itera-

measures. We show that this feature can be avoided entirelggg’ f\cl)vrhlc(i)hnsestljrglinnatessetgﬁaggst?;?:llg\t/za?; 3‘;}32'8;‘5&3}?623&”
Now, each of the B or 6j symbolsf(j), g(m), or h(j), g sep

listed in Table I, separately obeys a recurrence relation of thgchemes pertains to ISSues of ljumerlcal S.tab'l'ty that are d|§—
form CL_Jssed_beIow._ Befor_e delving into these issues, however, it
will be instructive to illustrate the use of Eq®) and(3).

We illustrate the use of Eq$2) and (3) upon assuming
that they(n) remain nonzero throughout the allowed range.
We first employ a backward iteration on E() from n
=Nmax down ton=np,q+ 1, wheren,q is some convenient
midpoint, €.9. Nmig= 3 (NminTNmay)- ONe will thus have gen-
erated the sequence of iterates ,(Nmad.l y(Nmax
—1),...5 y(Nmig+1). It is then straightforward to obtaig(n)
for Npigt 1<N<nax

NSNpax—1. (2

n=ngint+1, (3)

Xy (N y(n+1)+Y,(n)g(n)+Z,(n)y(n—1)=0,
nmin$ ns Nmax; (1)

where (n) signifies eitherf(j), g(m), or h(j), with the
index n denotingj or m together with its allowed range of
values,n,i,<n=n,,,. We also list in Table | the functions
Xy, Yy, andZ, that appear in the recurrence relation for

each symbol, as well as the minimum and maximum values K
of the variablej or m. We propose to solve Eql), a linear, (N g+ K) = llf(nm'd)H r (Mgt P)
three-term recurrence relation, by working with a pair of ' Wy M

1063-651X/98/5®)/72744)/$15.00 57 7274 © 1998 The American Physical Society



57

SIMPLIFIED RECURSIVE ALGORITHM FOR WIGNR . . .

7275

TABLE I. Parameters for, and constituents of, the three-term recurrence relations satisfied pyatfte@ symbols, as represented by
Eqg.(1). In each case, all parameters except the varipblem are held fixed. Also listed are the normalization condition and sign convention
for each symbol. We use the notation of ReX].

Variable j m i
Xy JA(j+1) C(m+1) JE(j+1)
Yy B(j) D(m) F()
Zy, (+1A() C(m) (+1E()
AD={[i*= (2= 2+ ist D>}’ C(m)=[(jz=m+1)(jo+m) E(G)={[i"—(j2=i2)]
X[j2=(mp+mg) 12 X(jz=m—m;+1) X[(Jo+jst1)*=j?%]
X (jz+m+my)]H X[i2=(12=19)%]
X[(Ip+153+1)%= 2}
Functions B(j)=(2j +1)[(my+my) D(m)=ja(j2+1)+]js(iz+1) FH=Qi+D{iG(G+DI[=j(j+1)
X{Ja(j2+ 1) —ja(ja+ 1)} —j1(jat1) Fia(j2+1)+ja(jat+1)
—(my=mg)j(j+1)] —2m(m-+my) =211+ 1) ]+ 15(1p+1)
X[+ +ja(j2+1)
—is(ja+1)]+15(l5+1)
X[+ —jaj2+1)
+ia(ist D1}
End points Jmin=max(j2—jal,[my+my) Mpin=Max(—jz,~jz—M) Jmin=max(jz=jal,l2—13))

Normalization

Sign

imax=l2t]s
shme 2]+ 1)f(j)=1

SIf (jmapd ] = (— 1)z 3" M

Mmax=min(jz,j3—my)

@j+D=me gi(m)=1

sgHY(Mma)]1=(— 1)j27j3’m1

Jmac=min(a+js,lo+15)

(213 +1)2im (2 +1)he(j)=1

SGIT(jma) 1 =(—1y2 "1z

1<Kk<Npax— Nmid -

(4)

100 60

f={_15 70 58

Of course, the value af(n,,g) is presently unknown; it will

be determined shortly through normalization. We now iterate
Eqg. (3) from n=n,, up to n=n.,q—1; this produces the

which remains nonzero over the allowed range<46-160.
The 3j and § symbols, of course, can and do vanish for

gigar:tei;ess J\J/\(/ngggip;bnm)Jrf%))rpﬁ. Sﬁ‘”(gﬂ'dsnl?'_ 1From these selected values of their parameters. If, sayng)=0,
min mid-— = ry(no+1) andsy(ny,—1) are undefined. We must therefore
" modify the above algorithm to account for this possibility,
and we will be guided by the following observations. Exam-

Y(Niig— k):w(nmid)pﬂl Sy(Mmig = P), ining Fig. 1, we note the resemblance betwd¢j) and a

one-dimensional bound quantum eigenstate. This is a generic
feature of the B and § symbols; we usd(j) merely as an
1<k<npig— Npmin - (5)

illustration. Now, it is known, from the semiclassical theory
of the 3 and § symbols[3], that the range of allowed
With the combined equationg) and (5), we have thus de- quantum numbersn,in<N<nhnax, Can be divided into the
termined they(n) up to an unknown multiplicative factor following subranges: a *“classical” regiom<n=n, and
#(Nmig). The magnitude of this factor is readily determined two complementary “nonclassical” regiomg,,<n<n, and

by imposing the normalization conditions given in Table I. ny<n=n.,,. The classical region is defined as the set of
We then utilize the phase information listed in Table | to quantum numbers for which it is possible to construct a vec-
completely determinei(n) for all n. As an example, we tor diagram showing the coupling of the angular momentum
show in Fig. 1 the result of applying this simple algorithm to vectors; in the nonclassical regimes, such vector diagrams do
obtain the family of 3 symbols, not exist[4]. The limits of the classical regiom, andn,,,
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overflows can develop. By contrast, in the classical region,
] where the solutions to the recurrence relation are oscillatory,
] there is no source of instability and one may safely iterate in
] either direction. The problem we seek to avoid in our ratio-
based method is that of encountering an identically zero
value of 4. The zeros ofy, however, if they occur, occur
only in the classical region, wherg(n) is oscillatory. We
therefore adopt a hybrid approach. We utilize the two-term
recurrence relation&) and(3) in the respective nonclassical
regions and the three-term recurrence relatrin the clas-
sical region.

For our purposes, however, preciseliiereone draws the
line between the classical and nonclassical regions is not
crucial; all that is important is that we stop iterating with
Egs.(2) and(3) somewhere in the classical region, before we
T e encounter a zero of(n). We will therefore adopt the fol-
120 140 160 lowing convention. In iterating Eqs2) and (3), starting

j from np,a and ny,,, respectively, we note that both,(n)
and s,(n) initially maintain values less than unity. Only

FIG. 1. Values for the family of B symbols, f(j)  when we reach the first local extremumfn) dor , ands,
=(11s %0 %59, over the entire range of allowedvalues, 46<j  first exceed unity. This provides a natural criterion for the
<160. In the classical regiorj,<j=j,, where herej,=49 and  |ocations of the boundaries and one that is simple to imple-
J=98 (shown as dashed lined (j) has an oscillatory character; in - ment algorithmically. We will denote the values mfwhere
the nonclassical region$(j) decays monotonically. There are are | (n) ands,(n) first exceed unityhaving started fronm .

25 orders of magnitude difference between the largest and smalleaf;’]dn ) byn, andn_, respectively. Specifically, we have
values in this family of 3 symbols. i M 121 ' :
ry(ny)>1, butr,(n,+1)<1.

are determined as the roots of a certain determinant, known The modifications of Eqg4) and(5) then become

as the Cayley determinaf]. For the parameters of Fig. 1, K
these are shown as dashed lines. The important point is that, 1K) = n
in analogy with a bound eigenstate, in the classical region the wns+k) ¢(n+),)1:[1 fy(N++p),

3j and § symbols have an oscillatory character, whereas in
the nonclassical regions, they are monotonically decaying Isksnpa— N4, 4
[3]. Depending on the width of the nonclassical regions,
there can be many orders of magnitude difference betweednd
the smallest values dfy(n)| (found atn,,. and n.,;, and K
tlheflargest values, which occur in the classical region. In F|g. w(n_—K)=y(n_) H s,(n_—p),
, for example, there are some 25 orders of magnitude dif- p=1

ference between the largest and smallest values in this family
of 3j symbols. 1sks=n_—ngyi, (5)

These considerations are relevant for the following rea- )
sons. In numerical treatments of the one-dimensional Schravhere, as before,, ands,, are obtained from Eqs¢2) and
dinger equation, one employs the standard finite-differencé3), NOW forn, <n<npa, andny,<n<n_, respectively. At
approximation to replace the continuous differential equatiothis point, we have the unknown quantities in Eqgs’)(and
by a three-term recurrence relation. We note that, converselyd'), #(n.) and ¢(n_). We can eliminate one of these
as discussed in Ref2], the three-term recurrence relations Unknowns in terms of the other as follows. Let us define two
satisfied by the Band § symbols can be shown to originate auxiliary sequencesV¥ _(n)=y(n)/¢(n-) and ¥ ,(n)
from eigenvalue problems. Now, as is well known, three-=#(n)/¢(n,). These quantities obviously satisfy the same
term recurrence relations possess two linearly independeffiree-term recurrence relatig). One can then use El)
solutions. If the desired physical solution of a recurrenceo iterate''_(n) in the forward direction starting fromm
relation is monotonically decreasing, as with the decay of=N-, using the initial value® _(n_—-1)=s,(n_-1) and
#(n) in its nonclassical regions, it is simple to show that the'? -(n-) =1, up to some value af, n.<n, , say.(For con-
other, linearly independent solution will be monotonically venience, we can take.=n . if desired) Likewise, we can
increasing. Indeed, the source of the numerical instabilityise Eq.(4) to iterate¥ . (n) in the backward direction start-
associated with three-term recurrence relations is[pif  ing from n=n,, using the initial values¥_ (n +1)
one attempts to calculate a decaying solution of the recur=r (n,+1) and¥ (n,)=1, down ton=n.. The value of
rence relation byforward iteration, the slightest round-off #(n.;) derived from these two sequences must obviously be
error will trigger the growth of the unwanted, linearly inde- identical. This yields the connection betweeitn,) and
pendent, diverging solution. P(n), v(n )/ g(n)=¥,(n)/¥_(ny). Multiplying the

Therefore, in the nonclassical regions one must iterate th# _(n) (which have now been evaluated unambiguously for
recurrence relation in the direction of increasing(n)| to Nmin=<nN=<ny) by #(n_)/4(n,) thus leaves us withV , (n)
avoid the instability. These are also just the regions wheréor n,i,<n<ny,; i.e., we have determineg(n) up to the
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unknown multiplicative factos(n,). As before, we deter- track of rescaling factors, our algorithm provides a highly
mine this factor by applying the normalization conditions accurate, yet significantly simpler framework, with which to
and sign conventions given in Table I. calculate these quantities.
In conclusion, we have presented a recursive algorithm to
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